EM1d

Jules Ferry

I. Présentation

1. Définitions

- <u>Conducteur</u>: milieu dont les porteurs de charges libres peuvent se mettre en mouvement sous l'action d'une force.
- <u>En équilibre électrostatique</u> : les porteurs de charges libres ont atteint leur état d'équilibre : ils sont statiques dans le référentiel d'étude (le laboratoire supposé galiléen).

2. Propriétés fondamentales

- 1. Le champ électrostatique à l'intérieur du conducteur est nul : $\forall M \in V, \vec{E}(M) = \vec{0}$.
- 2. Le potentiel électrostatique est constant dans tout le conducteur : $\forall M \in V, V(M) = cte$.
- 3. Si le conducteur est chargé, la distribution de charge ne peut être que surfacique :
 - $\forall M \in V, \rho(M) = 0$;
 - $\forall P \in S, \sigma(P) \neq 0$ a priori.

Démonstrations :

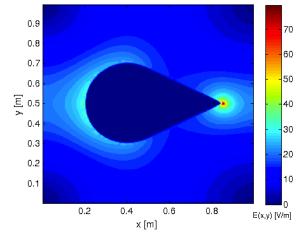
- 1. Soit une charge q au repos au sein du conducteur, de masse négligeable. On applique le principe fondamentale de la statique dans le référentiel du conducteur supposé galiléen : $\forall M \in V$, $\vec{F}_q = \vec{0} = q$. $\vec{E}(M)$ donc $\forall M \in V$, $\vec{E}(M) = \vec{0}$.
- 2. Par définition du potentiel électrostatique, $\forall M \in V$, $\vec{E}(M) = -\overline{grad_M}(V)$ donc $\forall M \in V$, V(M) = cte.
- 3. Par l'équation de Maxwell-Gauss, $\forall M \in V$, $\operatorname{div}_M \vec{E} = \frac{\rho(M)}{\epsilon_0}$ donc $\forall M \in V$, $\rho(M) = 0$.

 Donc si le conducteur est chargé, en état d'équilibre électrostatique, la densité de charge est surfacique (renvoyée à la surface du conducteur).

II. Théorème de Coulomb

1. Énoncé

À l'interface d'un conducteur en équilibre électrostatique chargé, de densité surfacique de charge σ , il y a discontinuité du champ électrostatique \vec{E} telle que : $\forall P \in S, \vec{E}_{ext}(P) = \frac{\sigma(P)}{\epsilon_0} \vec{n}_{sort}(P)$.


2. Démonstration

À partir de la relation de passage : $\forall P \in S$, $\vec{E}_2(P) - \vec{E}_1(P) = \frac{\sigma(P)}{\epsilon_0} \vec{n}_{1 \to 2}$ avec $\begin{cases} \vec{E}_2(P) = \vec{E}_{ext}(P) \\ \vec{E}_1(P) = \vec{E}_{int}(P) = \vec{0} \end{cases}$. $\vec{n}_{1 \to 2} = \vec{n}_{sort}(P)$

III. Culture générale

1. Effet de pointe dans un conducteur en équilibre

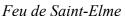
Une forte courbure à la surface du conducteur augmente la densité surfacique de charge et donc le champ électrique extérieur créé : on parle d'effet de pointe.

2. Champ disruptif dans un isolant

On considère souvent l'air comme un isolant parfait mais si le champ électrique qui lui est appliqué dépasse une certaine intensité $\|\vec{E}_{disruptif}(air)\|$, appelée champ disruptif de l'air, alors il y a claquage : l'air devient un bon conducteur électrique et un arc électrique (courant électrique) apparaît.

Exemple : le champ électrique entre la terre et les nuages peu dépasser le champ disruptif par temps d'orage, l'air devient alors un bon conducteur électrique et il y a formation d'un éclair.

Ordres de grandeurs:


- $\|\vec{E}_{disruptif}(air\,sec)\| \simeq 36\,000\,V.\,cm^{-1}$; $\|\vec{E}_{disruptif}(air\,humide)\| \simeq 10\,000\,V.\,cm^{-1}$.

Application: les lampes à décharges électriques (communément appelées « néons »).

Conséquences des deux phénomènes précédents (champ disruptif et effet de pointe) couplés :

Paratonnerre

3. Cage de Faraday

Applications:

- protection des appareils sensibles comme ordinateur de sauvegarde ;
- la voiture est une cage de Faraday contre les orages ;
- dans un cadre plus large : blindage des ondes électromagnétiques (cf ex4 TD5).