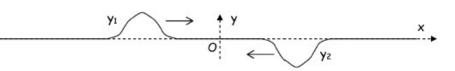

Jules Ferry

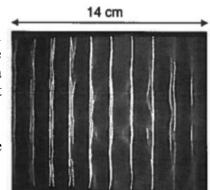
Exercice 1: Nature d'une onde (AC)

On considère l'onde sinusoïdale représentée sur le graphe ci-contre.


- 1. Peut-on conclure sur la nature progressive ou stationnaire de l'onde ?
- 2. Dessiner l'onde à un instant ultérieur dans le cas progressif puis stationnaire.

Exercice 2: Superposition d'ondes (AC)

Deux perturbations symétriques et opposées se propagent sur une corde dans des sens opposés :


On note $y_1(x,t)=f(-x+ct)$ l'onde de déformation de la corde allant vers la droite et $y_2(x,t)$ celle allant vers la gauche.

- 1. Exprimer $y_2(x,t)$.
- 2. Dessiner intuitivement l'allure de la corde lorsque les deux ondes se superposent.
- 3. Quelle est, en fonction de f, l'expression de la déformation totale y(x,t) de la corde à un instant quelconque.

Exercice 3: Onde de houle

• Doc 1 : simulation de la houle au laboratoire avec une cuve à ondes en utilisant une lame vibrante qui crée à la surface de l'eau une onde sinusoïdale de fréquence $f = 7.9 \, Hz$. La flaque d'eau contenue dans la cuve possède une épaisseur $e = 2 \, mm$. Un photo par stroboscopie est donnée ci-contre.

- Doc 2 : vitesse de propagation des ondes à la surface de l'eau.
 - ° Cas des ondes dites « courtes » si la longueur d'onde λ est faible devant la profondeur h d'eau ($\lambda < 0.5 h$): $c = \sqrt{\frac{g \lambda}{2\pi}}$;
 - cas des ondes dites « longues » si $\lambda > 5h$: $c = \sqrt{gh}$.
- 1. À quel type d'onde la houle présente dans la cuve correspond-elle ?
- 2. Combien de temps met l'onde pour traverser la cuve de longueur $D=30\,cm$.
- 3. Calculer la période d'une houle maritime de longueur d'onde 60m au niveau d'une fosse océanique de 3000m.

Exercice 4: Cordes de guitare

Une corde de guitare de longueur L est fixée à ses deux extrémités en x=0 et x=L. La corde est considérée comme étant sans épaisseur inextensible et sans raideur. On note μ sa masse linéique (masse par unité de longueur). Les frottements ainsi que le poids sont négligés devant la force de tension T supposée être la même tout le long de la corde.

- 1. Donner l'expression de la célérité des ondes de déformation sur la corde. Vérifier l'homogénéité de cette relation.
- 2. Recherche des ondes stationnaires.
 - Déterminer la longueur d'onde λ_n ainsi que la fréquence f_n associées aux différents modes propres n possibles de la corde. Le mode n=1 est pris pour le mode fondamental. Les modes n>1 sont les harmoniques de rang n.
- 3. Dans la réalité, la corde est initialement au repos. On l'écarte de cette position puis on la laisse évoluer librement : il apparaît alors une vibration sur la corde. Que peut-on dire du spectre de cette vibration ? Comment peut-on caractériser la « note » jouée par la corde ?
- 4. Une guitare électrique comporte 6 cordes en acier. Le tableau ci-dessous fournit pour chaque corde la valeur de sa fréquence fondamentale lorsque la guitare est accordée (mi, la, ré, sol, si, mi) ainsi que son diamètre d.

Corde n°	1	2	3	4	5	6
Fréquence f du fondamental en Hz	82,5	110	147	196	247	330
Diamètre d en mm	1,12	0,89	0,70	0,55	0,35	0,25

Toutes les cordes ont une longueur $L=0.63 \, m$ et masse volumique $\rho=7800 \, kg.m^{-3}$.

Déterminer la norme T de la tension d'une corde en fonction de ρ , π , d, L et de la fréquence f du mode fondamental.

Calculer numériquement les tensions nécessaires pour que la guitare soit accordée.

Comparer à la tension usuelle d'un cordage de raquette de tennis qui est de « 25 kg » (i.e égale au poids d'une masse de 25 kg).

Pour aller plus loin ...

Exercice 5: Note fondamentale d'un instrument à vent

On tuyau sonore peut etre le siège d'ondes acoustiques stationnaires qui vont	
dépendre des conditions aux limites imposées à ses deux extrémités. La figure	
ci-contre représente un tuyau cylindrique dont l'extrémité gauche est fermée et	
l'extrémité droite ouverte sur l'air. La pression acoustique (écart de la pression	
	C / / 11 11 /

par rapport à la pression statique) présente alors un ventre de vibration du côté fermé et un nœud de vibration du côté ouvert.

Un instrument à vent peut être considéré comme un tuyau sonore de longueur L. Il se comporte donc pour certaines fréquences comme un résonateur siège d'un système d'ondes stationnaires de longueurs d'ondes λ_n . Ces fréquences sont les modes propres de l'instrument et correspondent aux notes qu'il est capable de générer.

- 1. La flûte traversière est un instrument considéré comme ouvert à ses deux extrémités. Faire un dessin de l'onde stationnaire dans le tuyau sonore correspondant à la note fondamentale, la note la plus basse générée par l'instrument.
 - AN: déterminer la longueur de l'instrument pour que son fondamental soit la note mi de fréquence $f_1^{fl} = 330 \, Hz$; prendre pour la vitesse du son dans l'air $c = 340 \, m.s^{-1}$.
 - Exprimer f_1^f en fonction de c et L.
- 2. L'anche d'une clarinette est assimilée à une extrémité fermée. Refaire un dessin de l'onde stationnaire dans le tuyau sonore correspondant à la note fondamentale, c'est-à-dire de plus grande longueur d'onde. La clarinette a une longueur L sensiblement identique à celle de la flûte traversière. En déduire la fréquence f_1^{cl} du fondamental de la clarinette ; quelle est le plus grave des deux instruments ?
- 3. Montrer que les notes harmoniques sont régulièrement espacées en fréquence et que l'écart Δf entre deux harmoniques successifs est le même pour la flûte traversière et la clarinette ; quel est cet écart ?