Force	Point	Direction	Sens	Intensité	Unités	Exemple	Torseur
Force de pesanteur sur s (poids de s)	G (centre du volume de s)	verticale en général (de G vers le centre de la terre)	vers le bas	$R_{\text{pes}\to s} = m. g$	m: masse de s en Kg g : accélération de pesanteur (g =10 m/s²)	$\vec{R}_{\text{pes}\rightarrow\text{s}} = -\text{m.g.}\vec{z}$ $\vec{M}_{G,\text{pes}\rightarrow\text{s}} = \vec{0}$	
Force d'un fluide sur s (si faible variation d'altitude)	A (centre de la zone de contact fluide / s)	perpendiculaire à la surface (plane) de s en contact avec le fluide	vers s	$R_f \to S$ $= p. S$	p: pression en Pa (1MPa=10 bars) S: aire de la surface plane de contact entre le fluide et s (en m²)	En poussant : $\vec{M}_{A,f \to s} = \vec{0}$ $\vec{R}_{f \to s}$ En tirant : $\vec{R}_{f \to s}$ $\vec{M}_{A,f \to s} = \vec{0}$	0
Force d'un ressort de traction /compressio n sur s	A (centre de la zone de contact ressort / s)	axe d'enroulement du ressort	algébrique	$\mathbf{R_r} \to \mathbf{s}$ $= -k. \triangle \mathbf{x}$	k: raideur du ressort en N/m △x=x-x₀: allongement en m x: longueur du ressort en m xo: longueur du ressort (à vide ou dans une position d'équilibre) en m	$\uparrow^{\vec{X}} \qquad \qquad \downarrow^{X_0} \qquad \qquad \downarrow^{X_r \rightarrow s}$	

Couple	Direction	Sens	Intensité	Unités	Exemple	Torseur
Couple électro- magnétique	Axe de rotation du moteur	algébrique	$\mathbf{C_m} = \mathbf{k}.\mathbf{i}$ (moteur à courant continu)	Cm : couple d'un moteur (en N.m) k : constante du moteur (en N.m/A) i : courant électrique (en A)	N S Z	$ \begin{cases} 0 & \mathbf{Cm} \\ 0 & 0 \\ 0 & 0 \end{cases}_{A,\vec{x},\vec{y},\vec{z}} $ $ \stackrel{*}{\mathbf{x}} A : quelconque $
Ressort de torsion	Axe de rotation d'une pivot	algébrique	$C_r = -k.\Delta\theta$	Cr : couple du ressort (en N.m) k : raideur en torsion (en N.m/rad) Δθ : déformation angulaire du ressort (en rad)	\vec{x} \vec{y}	$ \begin{cases} 0 & 0 \\ 0 & 0 \\ 0 & \mathbf{Cr} \end{cases}_{A,\vec{x},\vec{y},\vec{z}} $ A: quelconque