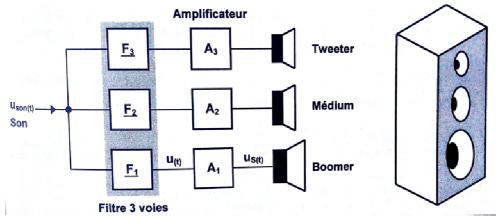
td	td ACQ 3.2	TSI1 (Période 3)
	Filtrage analogique actif	2h
	Cycle 8 : Acquérir Conditionner Traiter	4 semaines

ANALYSER Caractériser un constituant de la chaine d'information.

MODELISER Identifier les phénomènes physiques à modéliser.

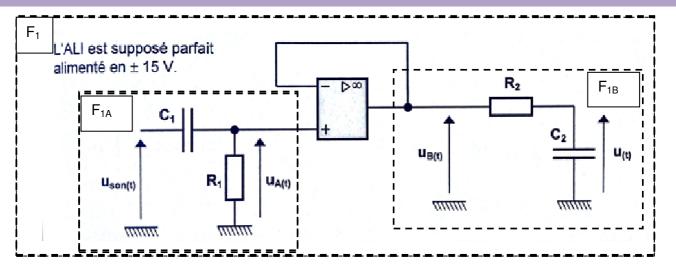
RESOUDRE Déterminer les signaux électriques dans les circuits.

EXPERIMENTER Identifier les erreurs de mesure et de méthode.


CONCEVOIR Choisir la technologie des composants de la chaine d'information.

Système de séparateur de fréquence pour enceinte acoustique

Une enceinte acoustique de qualité comporte 3 haut-parleurs.


- Le boomer qui reproduit les fréquences basses des sons graves (30 à 300Hz)
- Le medium qui reproduit les fréquences intermédiaires (300 à 3000Hz)
- Le tweeter qui reproduit les fréquences hautes des sons aigus (3 à 16kHz)

Dans une enceinte amplifiée, on retrouve le schéma de principe suivant :

On étudie dans cette partie, uniquement le filtrage et amplification du boomer (blocs F₁ et A₁).

A. Etude du filtre F1:

Etude du filtre F_{1B} (R_2 , C_2): $R_2 = 160k\Omega$, $C_2 = 3,3nF$

QA-1 Exprimer la fonction de transfert complexe $\underline{F_{1B}} = \frac{\underline{U}}{U_R} = f(R_2, C_2, \omega)$

La mettre sous forme canonique $F_{1B} = \frac{1}{1+j\frac{\omega}{\omega_2}}$

Quelle est la valeur de ω_2 et f_2 ?

QA-2 Construire le diagramme asymptotique de Bode du gain G_{1B} sur le document réponse DR1 et esquisser le tracé réel. Caractériser le filtre obtenu : ordre, type.

Quelle est sa bande passante à -3dB? Tracer en bleu son gabarit (le filtre doit atténuer les hautes fréquences d'au moins 20dB).

Etude du filtre $F_{1A}(R_1, C_1) : R_1 = 160k\Omega, C_1 = 33nF$

QA-3 Exprimer la fonction de transfert complexe $\underline{F_{1A}} = \frac{\underline{U_A}}{U_{son}} = f(R_1, C_1, \omega)$

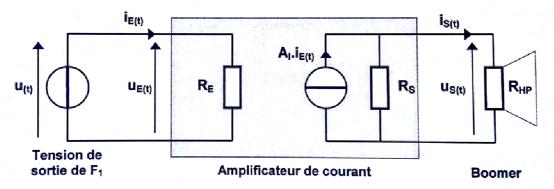
La mettre sous la forme canonique $\underline{F_{1A}} = \frac{j\frac{\omega}{\omega_1}}{1+j\frac{\omega}{\omega_1}}$, Quelle est la valeur de ω_1 et f_1 ?

QA-4 Construire le diagramme asymptotique de Bode du gain G_{1A} sur le document réponse DR2 et esquisser le tracé réel. Caractériser le filtre obtenu : ordre, type.

Quelle est sa bande passante à -3dB? Tracer en rouge son gabarit (le filtre doit atténuer les basses fréquences d'au moins 20dB).

Etude du filtre complet :

QA-5 Sachant que $U_A(t) = U_B(t)$, exprimer la fonction de transfert $\underline{F_1} = \underline{\underline{U}}_{\underline{Son}} = f(R_1, C_1, R_2, C_2, \omega)$


QA-6 Construire le diagramme asymptotique de Bode du gain G₁ sur le document réponse DR3 et esquisser le tracé réel. Caractériser le filtre obtenu : ordre, type.

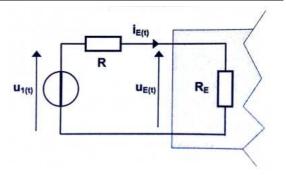
Quelle est sa bande passante à -3dB ? Tracer son gabarit (les fréquences éliminées doivent être atténuée d'au moins 20dB). Est-ce cohérent avec le haut-parleur associé ?

B. Etude de l'amplificateur A1 :

Les fréquences basses comprises entre 30 et 300Hz étant sélectionnées, on les amplifie avec un amplificateur de courant avant de les envoyer vers le boomer.

Son modèle électronique est défini ci-dessous :

Avant d'utiliser cet amplificateur, on désire mesurer ses paramètres principaux :


- Résistances d'entrée R_E et de sortie R_s
- Amplification en courant Ai.

Mesure de la résistance d'entrée :

On intercale une résistance R à l'entrée comme indiqué sur la figure.

On applique une tension alternative sinusoïdale de valeur efficace $U_{1eff} = 120 \text{ mV}$. On mesure $U_{Eeff} = 70 \text{ mV}$.

QB-1 Calculer R_E sachant que $R = 2.2 \text{ k}\Omega$

Mesure de la résistance de sortie :

On effectue 2 mesures côté sortie pour une même tension d'entrée alternative sinusoïdale U_E(t) :

Sans R_{HP} , on trouve $U_{S1eff} = 18 \text{ V}$

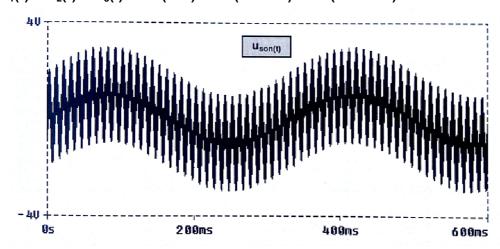
Avec R_{HP} , on trouve $U_{S2eff} = 7V$

On note $R_u = R_S // R_{HP}$

QB-2 Calculer R_S sachant que $R_{HP} = 8 \Omega$.

Mesure de l'amplification en courant :

On effectue une mesure des tensions d'entrée et de sortie sans R_{HP} . On trouve $U_{Seff} = 18V$ si l'on applique $U_{Eeff} = 0.4$ V (tension alternative sinusoïdale $U_{E}(t)$

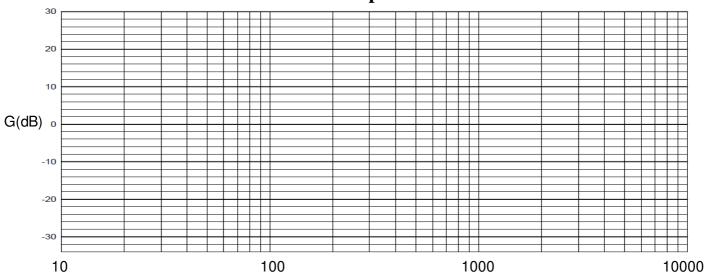

QB-3 Calculer le courant I_{Eeff}. En déduire l'amplification A_i et le gain correspondant en dB.

C. Exploitation des résultats :

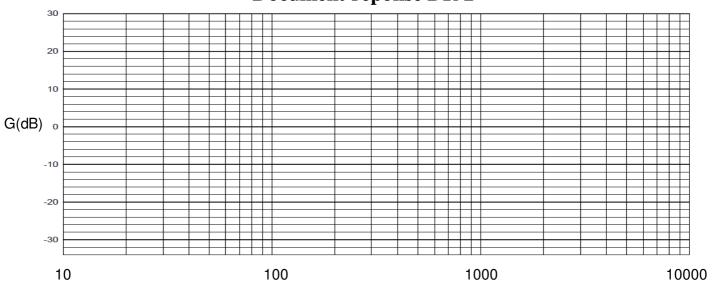
On suppose désormais que $R_E = 3 \text{ k}\Omega$, $R_S = 12,6 \Omega$, et $A_i = 11000 \text{ (81 dB)}$.

Pour tester notre système séparateur de fréquences, on envoie sur l'enceinte acoustique un signal composite $U_{son}(t)$ provenant d'un système multi-générateur :

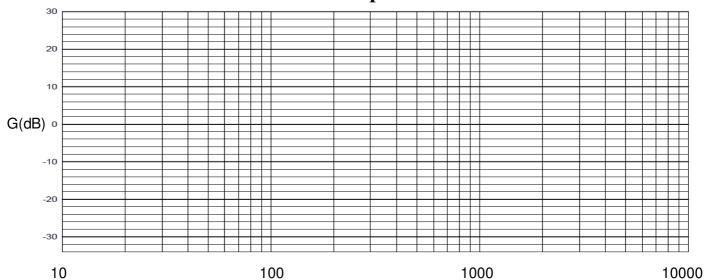
 $U_{son}(t) = U_1(t) + U_2(t) + U_3(t) = \sin(6\pi t) + \sin(200 \pi t) + \sin(6000 \pi t)$


QC-1 Déterminer à partir des tracés de Bode réalisés, les gains G_1 et les phases ϕ_1 associées aux 3 fréquences f_1 , f_2 et f_3 des signaux $U_1(t)$, $U_2(t)$ et $U_3(t)$.

QC-2 En déduire l'expression de U(t) en sortie du filtre (on négligera les signaux dont l'amplitude est atténuée d'au moins 20 dB par le filtre) puis celle de $U_S(t)$ aux bornes de $R_{HP} = 8 \Omega$.


QC-3 Calculer alors la puissance P₁ fournie à R_{HP} et la puissance P₂ dissipée dans R_S.

En déduire le rendement de l'amplificateur de courant : $\eta = \frac{P_1}{P_1 + P_2}$


Document réponse DR 1

Document réponse DR 2

Document réponse DR 3

